top of page

To play, press and hold the enter key. To stop, release the enter key.

press to zoom

press to zoom

press to zoom

press to zoom

press to zoom

press to zoom

press to zoom

press to zoom

press to zoom

press to zoom
Awardee Celebration
To play, press and hold the enter key. To stop, release the enter key.

press to zoom

press to zoom

press to zoom

press to zoom

press to zoom

press to zoom
Upcoming Events




Image Credit: Bart van Overbeeke
Featured Discoveries

A Rational Strategy for the Realization of Chain-Growth Supramolecular Polymerization
We rarely board airplanes by joining the back of a single well-ordered line. More often, we jostle around in one of several bulging crowds that merge haphazardly near the gate. Roughly speaking, these processes are analogous to the chain growth and step growth mechanisms of polymer assembly at the molecular level. Kang et al. present a strategy to link molecular building blocks through hydrogen bonding in accord with the well-controlled chain growth model. The molecules start out curled inward, as they engage in internal hydrogen bonding, until an initiator pulls one open; that molecule is then in the right conformation to pull a partner into the growing chain, poising it to pull in yet another, and so forth down the line.

Mechanically Robust, Readily Repairable Polymers via Tailored Noncovalent Cross-linking
The very long molecules found in synthetic polymers, and their tendency to entangle and partially crystallize, impart many of the polymers' useful properties. However, these same characteristics also mean that chain dynamics are slow, which impedes potential self-healing. Yanagisawa et al. developed a family of ether-thiourea linear polymers that form hydrogen-bonded networks and still manage to stay amorphous. The polymers are stiff, showing the strength of the hydrogen bonding; however, because these bonds can easily reform, the polymer is also able to self-heal when compressed.

An Elastic Metal–Organic Crystal with a Densely Catenated Backbone
What particular mechanical properties can be expected for materials composed of interlocked backbones has been a long-standing issue in materials science since the first reports on polycatenane and polyrotaxane in the 1970s1,2,3. Here we report a three-dimensional porous metal–organic crystal, which is exceptional in that its warps and wefts are connected only by catenation. This porous crystal is composed of a tetragonal lattice and dynamically changes its geometry upon guest molecule release, uptake and exchange, and also upon temperature variation even in a low temperature range. We indented4 the crystal along its a/b axes and obtained the Young’s moduli of 1.77 ± 0.16 GPa in N,N-dimethylformamide and 1.63 ± 0.13 GPa in tetrahydrofuran, which are the lowest among those reported so far for porous metal–organic crystals5. To our surprise, hydrostatic compression showed that this elastic porous crystal was the most deformable along its c axis, where 5% contraction occurred without structural deterioration upon compression up to 0.88 GPa. The crystal structure obtained at 0.46 GPa showed that the catenated macrocycles move translationally upon contraction. We anticipate our mechanically interlocked molecule-based design to be a starting point for the development of porous materials with exotic mechanical properties. For example, squeezable porous crystals that may address an essential difficulty in realizing both high abilities of guest uptake and release are on the horizon.

Accumulated Lattice Strain as an Internal Trigger for Spontaneous Pathway Selection
Multicomponent crystallization is universally important in various research fields including materials science as well as biology and geology, and presents new opportunities in crystal engineering. This process includes multiple kinetic and thermodynamic events that compete with each other, wherein “external triggers” often help the system select appropriate pathways for constructing desired structures. Here we report an unprecedented finding that a lattice strain accumulated with the growth of a crystal serves as an “internal trigger” for pathway selection in multicomponent crystallization. We discovered a “spontaneous” crystal transition, where the kinetically preferred layered crystal, initially formed by excluding the pillar component, carries a single dislocation at its geometrical center. This crystal “spontaneously” liberates a core region to relieve the accumulated lattice strain around the dislocation. Consequently, the liberated part becomes dynamic and enables the pillar ligand to invade the crystalline lattice, thereby transforming into a thermodynamically preferred pillared-layer crystal.

A Rational Strategy for the Realization of Chain-Growth Supramolecular Polymerization
We rarely board airplanes by joining the back of a single well-ordered line. More often, we jostle around in one of several bulging crowds that merge haphazardly near the gate. Roughly speaking, these processes are analogous to the chain growth and step growth mechanisms of polymer assembly at the molecular level. Kang et al. present a strategy to link molecular building blocks through hydrogen bonding in accord with the well-controlled chain growth model. The molecules start out curled inward, as they engage in internal hydrogen bonding, until an initiator pulls one open; that molecule is then in the right conformation to pull a partner into the growing chain, poising it to pull in yet another, and so forth down the line.

Mechanically Robust, Readily Repairable Polymers via Tailored Noncovalent Cross-linking
The very long molecules found in synthetic polymers, and their tendency to entangle and partially crystallize, impart many of the polymers' useful properties. However, these same characteristics also mean that chain dynamics are slow, which impedes potential self-healing. Yanagisawa et al. developed a family of ether-thiourea linear polymers that form hydrogen-bonded networks and still manage to stay amorphous. The polymers are stiff, showing the strength of the hydrogen bonding; however, because these bonds can easily reform, the polymer is also able to self-heal when compressed.

An Elastic Metal–Organic Crystal with a Densely Catenated Backbone
What particular mechanical properties can be expected for materials composed of interlocked backbones has been a long-standing issue in materials science since the first reports on polycatenane and polyrotaxane in the 1970s1,2,3. Here we report a three-dimensional porous metal–organic crystal, which is exceptional in that its warps and wefts are connected only by catenation. This porous crystal is composed of a tetragonal lattice and dynamically changes its geometry upon guest molecule release, uptake and exchange, and also upon temperature variation even in a low temperature range. We indented4 the crystal along its a/b axes and obtained the Young’s moduli of 1.77 ± 0.16 GPa in N,N-dimethylformamide and 1.63 ± 0.13 GPa in tetrahydrofuran, which are the lowest among those reported so far for porous metal–organic crystals5. To our surprise, hydrostatic compression showed that this elastic porous crystal was the most deformable along its c axis, where 5% contraction occurred without structural deterioration upon compression up to 0.88 GPa. The crystal structure obtained at 0.46 GPa showed that the catenated macrocycles move translationally upon contraction. We anticipate our mechanically interlocked molecule-based design to be a starting point for the development of porous materials with exotic mechanical properties. For example, squeezable porous crystals that may address an essential difficulty in realizing both high abilities of guest uptake and release are on the horizon.

Accumulated Lattice Strain as an Internal Trigger for Spontaneous Pathway Selection
Multicomponent crystallization is universally important in various research fields including materials science as well as biology and geology, and presents new opportunities in crystal engineering. This process includes multiple kinetic and thermodynamic events that compete with each other, wherein “external triggers” often help the system select appropriate pathways for constructing desired structures. Here we report an unprecedented finding that a lattice strain accumulated with the growth of a crystal serves as an “internal trigger” for pathway selection in multicomponent crystallization. We discovered a “spontaneous” crystal transition, where the kinetically preferred layered crystal, initially formed by excluding the pillar component, carries a single dislocation at its geometrical center. This crystal “spontaneously” liberates a core region to relieve the accumulated lattice strain around the dislocation. Consequently, the liberated part becomes dynamic and enables the pillar ligand to invade the crystalline lattice, thereby transforming into a thermodynamically preferred pillared-layer crystal.

A Rational Strategy for the Realization of Chain-Growth Supramolecular Polymerization
We rarely board airplanes by joining the back of a single well-ordered line. More often, we jostle around in one of several bulging crowds that merge haphazardly near the gate. Roughly speaking, these processes are analogous to the chain growth and step growth mechanisms of polymer assembly at the molecular level. Kang et al. present a strategy to link molecular building blocks through hydrogen bonding in accord with the well-controlled chain growth model. The molecules start out curled inward, as they engage in internal hydrogen bonding, until an initiator pulls one open; that molecule is then in the right conformation to pull a partner into the growing chain, poising it to pull in yet another, and so forth down the line.

Mechanically Robust, Readily Repairable Polymers via Tailored Noncovalent Cross-linking
The very long molecules found in synthetic polymers, and their tendency to entangle and partially crystallize, impart many of the polymers' useful properties. However, these same characteristics also mean that chain dynamics are slow, which impedes potential self-healing. Yanagisawa et al. developed a family of ether-thiourea linear polymers that form hydrogen-bonded networks and still manage to stay amorphous. The polymers are stiff, showing the strength of the hydrogen bonding; however, because these bonds can easily reform, the polymer is also able to self-heal when compressed.

An Elastic Metal–Organic Crystal with a Densely Catenated Backbone
What particular mechanical properties can be expected for materials composed of interlocked backbones has been a long-standing issue in materials science since the first reports on polycatenane and polyrotaxane in the 1970s1,2,3. Here we report a three-dimensional porous metal–organic crystal, which is exceptional in that its warps and wefts are connected only by catenation. This porous crystal is composed of a tetragonal lattice and dynamically changes its geometry upon guest molecule release, uptake and exchange, and also upon temperature variation even in a low temperature range. We indented4 the crystal along its a/b axes and obtained the Young’s moduli of 1.77 ± 0.16 GPa in N,N-dimethylformamide and 1.63 ± 0.13 GPa in tetrahydrofuran, which are the lowest among those reported so far for porous metal–organic crystals5. To our surprise, hydrostatic compression showed that this elastic porous crystal was the most deformable along its c axis, where 5% contraction occurred without structural deterioration upon compression up to 0.88 GPa. The crystal structure obtained at 0.46 GPa showed that the catenated macrocycles move translationally upon contraction. We anticipate our mechanically interlocked molecule-based design to be a starting point for the development of porous materials with exotic mechanical properties. For example, squeezable porous crystals that may address an essential difficulty in realizing both high abilities of guest uptake and release are on the horizon.

Accumulated Lattice Strain as an Internal Trigger for Spontaneous Pathway Selection
Multicomponent crystallization is universally important in various research fields including materials science as well as biology and geology, and presents new opportunities in crystal engineering. This process includes multiple kinetic and thermodynamic events that compete with each other, wherein “external triggers” often help the system select appropriate pathways for constructing desired structures. Here we report an unprecedented finding that a lattice strain accumulated with the growth of a crystal serves as an “internal trigger” for pathway selection in multicomponent crystallization. We discovered a “spontaneous” crystal transition, where the kinetically preferred layered crystal, initially formed by excluding the pillar component, carries a single dislocation at its geometrical center. This crystal “spontaneously” liberates a core region to relieve the accumulated lattice strain around the dislocation. Consequently, the liberated part becomes dynamic and enables the pillar ligand to invade the crystalline lattice, thereby transforming into a thermodynamically preferred pillared-layer crystal.

A Rational Strategy for the Realization of Chain-Growth Supramolecular Polymerization
We rarely board airplanes by joining the back of a single well-ordered line. More often, we jostle around in one of several bulging crowds that merge haphazardly near the gate. Roughly speaking, these processes are analogous to the chain growth and step growth mechanisms of polymer assembly at the molecular level. Kang et al. present a strategy to link molecular building blocks through hydrogen bonding in accord with the well-controlled chain growth model. The molecules start out curled inward, as they engage in internal hydrogen bonding, until an initiator pulls one open; that molecule is then in the right conformation to pull a partner into the growing chain, poising it to pull in yet another, and so forth down the line.

Mechanically Robust, Readily Repairable Polymers via Tailored Noncovalent Cross-linking
The very long molecules found in synthetic polymers, and their tendency to entangle and partially crystallize, impart many of the polymers' useful properties. However, these same characteristics also mean that chain dynamics are slow, which impedes potential self-healing. Yanagisawa et al. developed a family of ether-thiourea linear polymers that form hydrogen-bonded networks and still manage to stay amorphous. The polymers are stiff, showing the strength of the hydrogen bonding; however, because these bonds can easily reform, the polymer is also able to self-heal when compressed.

An Elastic Metal–Organic Crystal with a Densely Catenated Backbone
What particular mechanical properties can be expected for materials composed of interlocked backbones has been a long-standing issue in materials science since the first reports on polycatenane and polyrotaxane in the 1970s1,2,3. Here we report a three-dimensional porous metal–organic crystal, which is exceptional in that its warps and wefts are connected only by catenation. This porous crystal is composed of a tetragonal lattice and dynamically changes its geometry upon guest molecule release, uptake and exchange, and also upon temperature variation even in a low temperature range. We indented4 the crystal along its a/b axes and obtained the Young’s moduli of 1.77 ± 0.16 GPa in N,N-dimethylformamide and 1.63 ± 0.13 GPa in tetrahydrofuran, which are the lowest among those reported so far for porous metal–organic crystals5. To our surprise, hydrostatic compression showed that this elastic porous crystal was the most deformable along its c axis, where 5% contraction occurred without structural deterioration upon compression up to 0.88 GPa. The crystal structure obtained at 0.46 GPa showed that the catenated macrocycles move translationally upon contraction. We anticipate our mechanically interlocked molecule-based design to be a starting point for the development of porous materials with exotic mechanical properties. For example, squeezable porous crystals that may address an essential difficulty in realizing both high abilities of guest uptake and release are on the horizon.

Accumulated Lattice Strain as an Internal Trigger for Spontaneous Pathway Selection
Multicomponent crystallization is universally important in various research fields including materials science as well as biology and geology, and presents new opportunities in crystal engineering. This process includes multiple kinetic and thermodynamic events that compete with each other, wherein “external triggers” often help the system select appropriate pathways for constructing desired structures. Here we report an unprecedented finding that a lattice strain accumulated with the growth of a crystal serves as an “internal trigger” for pathway selection in multicomponent crystallization. We discovered a “spontaneous” crystal transition, where the kinetically preferred layered crystal, initially formed by excluding the pillar component, carries a single dislocation at its geometrical center. This crystal “spontaneously” liberates a core region to relieve the accumulated lattice strain around the dislocation. Consequently, the liberated part becomes dynamic and enables the pillar ligand to invade the crystalline lattice, thereby transforming into a thermodynamically preferred pillared-layer crystal.

A Rational Strategy for the Realization of Chain-Growth Supramolecular Polymerization
We rarely board airplanes by joining the back of a single well-ordered line. More often, we jostle around in one of several bulging crowds that merge haphazardly near the gate. Roughly speaking, these processes are analogous to the chain growth and step growth mechanisms of polymer assembly at the molecular level. Kang et al. present a strategy to link molecular building blocks through hydrogen bonding in accord with the well-controlled chain growth model. The molecules start out curled inward, as they engage in internal hydrogen bonding, until an initiator pulls one open; that molecule is then in the right conformation to pull a partner into the growing chain, poising it to pull in yet another, and so forth down the line.

Mechanically Robust, Readily Repairable Polymers via Tailored Noncovalent Cross-linking
The very long molecules found in synthetic polymers, and their tendency to entangle and partially crystallize, impart many of the polymers' useful properties. However, these same characteristics also mean that chain dynamics are slow, which impedes potential self-healing. Yanagisawa et al. developed a family of ether-thiourea linear polymers that form hydrogen-bonded networks and still manage to stay amorphous. The polymers are stiff, showing the strength of the hydrogen bonding; however, because these bonds can easily reform, the polymer is also able to self-heal when compressed.

An Elastic Metal–Organic Crystal with a Densely Catenated Backbone
What particular mechanical properties can be expected for materials composed of interlocked backbones has been a long-standing issue in materials science since the first reports on polycatenane and polyrotaxane in the 1970s1,2,3. Here we report a three-dimensional porous metal–organic crystal, which is exceptional in that its warps and wefts are connected only by catenation. This porous crystal is composed of a tetragonal lattice and dynamically changes its geometry upon guest molecule release, uptake and exchange, and also upon temperature variation even in a low temperature range. We indented4 the crystal along its a/b axes and obtained the Young’s moduli of 1.77 ± 0.16 GPa in N,N-dimethylformamide and 1.63 ± 0.13 GPa in tetrahydrofuran, which are the lowest among those reported so far for porous metal–organic crystals5. To our surprise, hydrostatic compression showed that this elastic porous crystal was the most deformable along its c axis, where 5% contraction occurred without structural deterioration upon compression up to 0.88 GPa. The crystal structure obtained at 0.46 GPa showed that the catenated macrocycles move translationally upon contraction. We anticipate our mechanically interlocked molecule-based design to be a starting point for the development of porous materials with exotic mechanical properties. For example, squeezable porous crystals that may address an essential difficulty in realizing both high abilities of guest uptake and release are on the horizon.

Accumulated Lattice Strain as an Internal Trigger for Spontaneous Pathway Selection
Multicomponent crystallization is universally important in various research fields including materials science as well as biology and geology, and presents new opportunities in crystal engineering. This process includes multiple kinetic and thermodynamic events that compete with each other, wherein “external triggers” often help the system select appropriate pathways for constructing desired structures. Here we report an unprecedented finding that a lattice strain accumulated with the growth of a crystal serves as an “internal trigger” for pathway selection in multicomponent crystallization. We discovered a “spontaneous” crystal transition, where the kinetically preferred layered crystal, initially formed by excluding the pillar component, carries a single dislocation at its geometrical center. This crystal “spontaneously” liberates a core region to relieve the accumulated lattice strain around the dislocation. Consequently, the liberated part becomes dynamic and enables the pillar ligand to invade the crystalline lattice, thereby transforming into a thermodynamically preferred pillared-layer crystal.

A Rational Strategy for the Realization of Chain-Growth Supramolecular Polymerization
We rarely board airplanes by joining the back of a single well-ordered line. More often, we jostle around in one of several bulging crowds that merge haphazardly near the gate. Roughly speaking, these processes are analogous to the chain growth and step growth mechanisms of polymer assembly at the molecular level. Kang et al. present a strategy to link molecular building blocks through hydrogen bonding in accord with the well-controlled chain growth model. The molecules start out curled inward, as they engage in internal hydrogen bonding, until an initiator pulls one open; that molecule is then in the right conformation to pull a partner into the growing chain, poising it to pull in yet another, and so forth down the line.

Mechanically Robust, Readily Repairable Polymers via Tailored Noncovalent Cross-linking
The very long molecules found in synthetic polymers, and their tendency to entangle and partially crystallize, impart many of the polymers' useful properties. However, these same characteristics also mean that chain dynamics are slow, which impedes potential self-healing. Yanagisawa et al. developed a family of ether-thiourea linear polymers that form hydrogen-bonded networks and still manage to stay amorphous. The polymers are stiff, showing the strength of the hydrogen bonding; however, because these bonds can easily reform, the polymer is also able to self-heal when compressed.

An Elastic Metal–Organic Crystal with a Densely Catenated Backbone
What particular mechanical properties can be expected for materials composed of interlocked backbones has been a long-standing issue in materials science since the first reports on polycatenane and polyrotaxane in the 1970s1,2,3. Here we report a three-dimensional porous metal–organic crystal, which is exceptional in that its warps and wefts are connected only by catenation. This porous crystal is composed of a tetragonal lattice and dynamically changes its geometry upon guest molecule release, uptake and exchange, and also upon temperature variation even in a low temperature range. We indented4 the crystal along its a/b axes and obtained the Young’s moduli of 1.77 ± 0.16 GPa in N,N-dimethylformamide and 1.63 ± 0.13 GPa in tetrahydrofuran, which are the lowest among those reported so far for porous metal–organic crystals5. To our surprise, hydrostatic compression showed that this elastic porous crystal was the most deformable along its c axis, where 5% contraction occurred without structural deterioration upon compression up to 0.88 GPa. The crystal structure obtained at 0.46 GPa showed that the catenated macrocycles move translationally upon contraction. We anticipate our mechanically interlocked molecule-based design to be a starting point for the development of porous materials with exotic mechanical properties. For example, squeezable porous crystals that may address an essential difficulty in realizing both high abilities of guest uptake and release are on the horizon.

Accumulated Lattice Strain as an Internal Trigger for Spontaneous Pathway Selection
Multicomponent crystallization is universally important in various research fields including materials science as well as biology and geology, and presents new opportunities in crystal engineering. This process includes multiple kinetic and thermodynamic events that compete with each other, wherein “external triggers” often help the system select appropriate pathways for constructing desired structures. Here we report an unprecedented finding that a lattice strain accumulated with the growth of a crystal serves as an “internal trigger” for pathway selection in multicomponent crystallization. We discovered a “spontaneous” crystal transition, where the kinetically preferred layered crystal, initially formed by excluding the pillar component, carries a single dislocation at its geometrical center. This crystal “spontaneously” liberates a core region to relieve the accumulated lattice strain around the dislocation. Consequently, the liberated part becomes dynamic and enables the pillar ligand to invade the crystalline lattice, thereby transforming into a thermodynamically preferred pillared-layer crystal.

A Rational Strategy for the Realization of Chain-Growth Supramolecular Polymerization
We rarely board airplanes by joining the back of a single well-ordered line. More often, we jostle around in one of several bulging crowds that merge haphazardly near the gate. Roughly speaking, these processes are analogous to the chain growth and step growth mechanisms of polymer assembly at the molecular level. Kang et al. present a strategy to link molecular building blocks through hydrogen bonding in accord with the well-controlled chain growth model. The molecules start out curled inward, as they engage in internal hydrogen bonding, until an initiator pulls one open; that molecule is then in the right conformation to pull a partner into the growing chain, poising it to pull in yet another, and so forth down the line.

Mechanically Robust, Readily Repairable Polymers via Tailored Noncovalent Cross-linking
The very long molecules found in synthetic polymers, and their tendency to entangle and partially crystallize, impart many of the polymers' useful properties. However, these same characteristics also mean that chain dynamics are slow, which impedes potential self-healing. Yanagisawa et al. developed a family of ether-thiourea linear polymers that form hydrogen-bonded networks and still manage to stay amorphous. The polymers are stiff, showing the strength of the hydrogen bonding; however, because these bonds can easily reform, the polymer is also able to self-heal when compressed.

An Elastic Metal–Organic Crystal with a Densely Catenated Backbone
What particular mechanical properties can be expected for materials composed of interlocked backbones has been a long-standing issue in materials science since the first reports on polycatenane and polyrotaxane in the 1970s1,2,3. Here we report a three-dimensional porous metal–organic crystal, which is exceptional in that its warps and wefts are connected only by catenation. This porous crystal is composed of a tetragonal lattice and dynamically changes its geometry upon guest molecule release, uptake and exchange, and also upon temperature variation even in a low temperature range. We indented4 the crystal along its a/b axes and obtained the Young’s moduli of 1.77 ± 0.16 GPa in N,N-dimethylformamide and 1.63 ± 0.13 GPa in tetrahydrofuran, which are the lowest among those reported so far for porous metal–organic crystals5. To our surprise, hydrostatic compression showed that this elastic porous crystal was the most deformable along its c axis, where 5% contraction occurred without structural deterioration upon compression up to 0.88 GPa. The crystal structure obtained at 0.46 GPa showed that the catenated macrocycles move translationally upon contraction. We anticipate our mechanically interlocked molecule-based design to be a starting point for the development of porous materials with exotic mechanical properties. For example, squeezable porous crystals that may address an essential difficulty in realizing both high abilities of guest uptake and release are on the horizon.

Accumulated Lattice Strain as an Internal Trigger for Spontaneous Pathway Selection
Multicomponent crystallization is universally important in various research fields including materials science as well as biology and geology, and presents new opportunities in crystal engineering. This process includes multiple kinetic and thermodynamic events that compete with each other, wherein “external triggers” often help the system select appropriate pathways for constructing desired structures. Here we report an unprecedented finding that a lattice strain accumulated with the growth of a crystal serves as an “internal trigger” for pathway selection in multicomponent crystallization. We discovered a “spontaneous” crystal transition, where the kinetically preferred layered crystal, initially formed by excluding the pillar component, carries a single dislocation at its geometrical center. This crystal “spontaneously” liberates a core region to relieve the accumulated lattice strain around the dislocation. Consequently, the liberated part becomes dynamic and enables the pillar ligand to invade the crystalline lattice, thereby transforming into a thermodynamically preferred pillared-layer crystal.

A Rational Strategy for the Realization of Chain-Growth Supramolecular Polymerization
We rarely board airplanes by joining the back of a single well-ordered line. More often, we jostle around in one of several bulging crowds that merge haphazardly near the gate. Roughly speaking, these processes are analogous to the chain growth and step growth mechanisms of polymer assembly at the molecular level. Kang et al. present a strategy to link molecular building blocks through hydrogen bonding in accord with the well-controlled chain growth model. The molecules start out curled inward, as they engage in internal hydrogen bonding, until an initiator pulls one open; that molecule is then in the right conformation to pull a partner into the growing chain, poising it to pull in yet another, and so forth down the line.

Mechanically Robust, Readily Repairable Polymers via Tailored Noncovalent Cross-linking
The very long molecules found in synthetic polymers, and their tendency to entangle and partially crystallize, impart many of the polymers' useful properties. However, these same characteristics also mean that chain dynamics are slow, which impedes potential self-healing. Yanagisawa et al. developed a family of ether-thiourea linear polymers that form hydrogen-bonded networks and still manage to stay amorphous. The polymers are stiff, showing the strength of the hydrogen bonding; however, because these bonds can easily reform, the polymer is also able to self-heal when compressed.

An Elastic Metal–Organic Crystal with a Densely Catenated Backbone
What particular mechanical properties can be expected for materials composed of interlocked backbones has been a long-standing issue in materials science since the first reports on polycatenane and polyrotaxane in the 1970s1,2,3. Here we report a three-dimensional porous metal–organic crystal, which is exceptional in that its warps and wefts are connected only by catenation. This porous crystal is composed of a tetragonal lattice and dynamically changes its geometry upon guest molecule release, uptake and exchange, and also upon temperature variation even in a low temperature range. We indented4 the crystal along its a/b axes and obtained the Young’s moduli of 1.77 ± 0.16 GPa in N,N-dimethylformamide and 1.63 ± 0.13 GPa in tetrahydrofuran, which are the lowest among those reported so far for porous metal–organic crystals5. To our surprise, hydrostatic compression showed that this elastic porous crystal was the most deformable along its c axis, where 5% contraction occurred without structural deterioration upon compression up to 0.88 GPa. The crystal structure obtained at 0.46 GPa showed that the catenated macrocycles move translationally upon contraction. We anticipate our mechanically interlocked molecule-based design to be a starting point for the development of porous materials with exotic mechanical properties. For example, squeezable porous crystals that may address an essential difficulty in realizing both high abilities of guest uptake and release are on the horizon.

Accumulated Lattice Strain as an Internal Trigger for Spontaneous Pathway Selection
Multicomponent crystallization is universally important in various research fields including materials science as well as biology and geology, and presents new opportunities in crystal engineering. This process includes multiple kinetic and thermodynamic events that compete with each other, wherein “external triggers” often help the system select appropriate pathways for constructing desired structures. Here we report an unprecedented finding that a lattice strain accumulated with the growth of a crystal serves as an “internal trigger” for pathway selection in multicomponent crystallization. We discovered a “spontaneous” crystal transition, where the kinetically preferred layered crystal, initially formed by excluding the pillar component, carries a single dislocation at its geometrical center. This crystal “spontaneously” liberates a core region to relieve the accumulated lattice strain around the dislocation. Consequently, the liberated part becomes dynamic and enables the pillar ligand to invade the crystalline lattice, thereby transforming into a thermodynamically preferred pillared-layer crystal.
bottom of page